Class numbers in the imaginary quadratic field and the 1/f noise of an electron gas
نویسنده
چکیده
Partition functions Z(x) of statistical mechanics are generally approximated by integrals. The approximation fails in small cavities or at very low temperature, when the ratio x between the energy quantum and thermal energy is larger or equal to unity. In addition, the exact calculation, which is based on number theoretical concepts, shows excess low frequency noise in thermodynamical quantities, that the continuous approximation fails to predict. It is first shown that Riemann zeta function is essentially the Mellin transform of the partition function Z(x) of the non degenerate (one dimensional) perfect gas. Inverting the transform leads to the conventional perfect gas law. The degeneracy has two aspects. One is related to the wave nature of particles: this is accounted for from quantum statistics, when the de Broglie wavelength exceeds the mean distance between particles. We emphasize here the second aspect which is related to the degeneracy of energy levels. It is given by the number of solutions r3(p) of the three squares diophantine equation, a highly discontinuous arithmetical function. In the conventional approach the density of states is proportional to the square root of energy, that is r3(p) ≃ 2πp1/2. We found that the exact density of states relates to the class number in the quadratic field Q( √−p). One finds 1/f noise around the mean value. Key-Words: Electronic circuits, number theory, quantum statistical physics, 1/f noise
منابع مشابه
L - Functions and Class Numbers of Imaginary Quadratic Fields and of Quadratic Extensions of an Imaginary Quadratic Field
Starting from the analytic class number formula involving its Lfunction, we first give an expression for the class number of an imaginary quadratic field which, in the case of large discriminants, provides us with a much more powerful numerical technique than that of counting the number of reduced definite positive binary quadratic forms, as has been used by Buell in order to compute his class ...
متن کاملThe Ideal Class Group
We present a concise and self-contained definition of the ideal class group, which is useful for proving facts about zero sets of Diophantine equations, and discuss a few relevant key facts. We approach this by first assembling some preliminary definitions regarding algebraic integers, and subsequently delving into several useful results about lattices, including Minkowski’s lemma. Then, return...
متن کاملExplicit Construction of the Hilbert Class Fields of Imaginary Quadratic Fields with Class Numbers 7 and 11
Motivated by a constructive realization of dihedral groups of prime degree as Galois group over the field of rational numbers, we give an explicit construction of the Hilbert class fields of some imaginary quadratic fields with class numbers 7 and 11. This was done by explicitly evaluating the elliptic modular j -invariant at each representative of the ideal class of an imaginary quadratic fiel...
متن کاملEndoscopy and the cohomology of $GL(n)$
Let $G = {rm Res}_{F/mathbb{Q}}(GL_n)$ where $F$ is a number field. Let $S^G_{K_f}$ denote an ad`elic locally symmetric space for some level structure $K_f.$ Let ${mathcal M}_{mu,{mathbb C}}$ be an algebraic irreducible representation of $G({mathbb R})$ and we let $widetilde{mathcal{M}}_{mu,{mathbb C}}$ denote the associated sheaf on $S^G_{K_f}.$ The aim of this paper is to classify the data ...
متن کاملHilbert-Speiser number fields and Stickelberger ideals
Let p be a prime number. We say that a number field F satisfies the condition (H ′ pn) when any abelian extension N/F of exponent dividing p has a normal integral basis with respect to the ring of p-integers. We also say that F satisfies (H ′ p∞) when it satisfies (H ′ pn) for all n ≥ 1. It is known that the rationals Q satisfy (H ′ p∞) for all prime numbers p. In this paper, we give a simple c...
متن کامل